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[1] A technique to estimate the uncertainties of the parameters of a neural network
model, i.e., the synaptic weights, was described in the work of Aires [2004]. Using
these weight uncertainty estimates, we compute the uncertainties in the network outputs
(i.e., error bars and correlation structure of these errors). Such quantities are very
important for evaluating any application of the neural network technique. The theory
is applied to the same remote sensing problem as in the work of Aires [2004] concerning
the retrieval of surface skin temperature, microwave surface emissivities and integrated
water vapor content from a combined analysis of microwave and infrared observations
over land. INDEX TERMS: 0933 Exploration Geophysics: Remote sensing; 3210 Mathematical

Geophysics: Modeling; 3260 Mathematical Geophysics: Inverse theory; 3399 Meteorology and Atmospheric

Dynamics: General or miscellaneous; KEYWORDS: remote sensing, uncertainty, neural networks
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1. Introduction

[2] Remote sensing requires the estimation of geophysi-
cal variables based on the inversion of indirect measure-
ments. Neural network techniques have proved very
successful in developing computationally efficient algo-
rithms for remote sensing [e.g., Aires et al., 2002b]. A
rigorous scientific approach requires not only good retrieval
quality, but also an estimate of the uncertainty of the
retrieval (i.e., error bars plus correlation structure of the
errors) [Saltieri et al., 2000].
[3] One of the reasons for which such uncertainty

estimates are important is that the retrieved geophysical
variables are often used in a subsequent algorithm that
requires an estimation of the errors and the correlation
structure of these errors. For example, the variational
assimilation approach [Kalnay, 2002; Ide et al., 1997]) uses
estimated uncertainties of model and observations to weight
optimally both sources of information for the forecast.
[4] Reliability of the NN predictions is very important for

any application. Confidence intervals (CI) have been devel-
oped for classical linear regression theory with well-estab-

lished results [e.g., Koroliouk et al., 1983]. For nonlinear
models, such results are more recent [Bates and Watts,
1988], and in NN they are rarely available. Generally, only
the RMS of the generalization error is provided but this
single quantity is not situation-dependent. Other approaches
use Bootstrap techniques to estimation such CI but they are
limited by the large amount of computations that such
approaches require. Recently, Rivals and Personnaz
[2000, 2003] introduced a new method for the estimation
of CI by using a linear Taylor expansion of the NN outputs
(which makes traditional estimation of CI for nonlinear
models a tractable problem).
[5] Our work is based on the developments of Le Cun et

al. [1990] and MacKay [1992]. These studies introduced
error bar estimates for neural networks using a Bayesian
approach but these tools were developed and tested in
artificial cases for a unique network output. In this paper,
we use a slightly different approach than the more tradi-
tional ‘‘full Bayesian’’ method where scalar hyperparam-
eters are estimated via the so-called ‘‘evidence’’ approach.
A multiple output method is used in order to develop
uncertainty tools for real-world applications. This method
not only provides uncertainty estimates on the parameters of
the neural network [see Aires, 2004], it can also evaluate a
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variety of probabilistic quantities such as the uncertainty
estimates of the network outputs.
[6] These developments are used in order to provide a

new framework for the characterization and the analysis of
various sources of neural network errors. In this work, we
separate the errors that are due to the NN weight uncer-
tainty and the errors from all remaining sources. We will
comment on an approach to analyze in even more detail
the various contributions to output errors. These errors are
described in terms of covariance matrices that can be
interpreted using eigen-vectors called ‘‘error patterns’’
[see Rodgers, 1990].
[7] These algorithmic developments are tested for the

retrieval of surface skin temperature, microwave surface
emissivities, and integrated water vapor content from a
combined analysis of microwave and infrared observa-
tions (see Aires [2004] for a detailed description of this
application).
[8] The theoretical computation of the predictive distri-

bution of network outputs is developed in section 2. The
developments in section 2 are used in section 3 to charac-
terize the NN output uncertainty sources. The technique is
applied to a neural network inversion algorithm for remote
sensing in section 4. Conclusions and perspectives are given
in section 5.

2. Predictive Distribution of Network Outputs

[9] The developments of this section, aimed at describing
the distribution of the NN output (i.e., predictive distribu-
tion) and total output errors, are inspired by the Bayesian
learning of neural networks chapter of Bishop [1996]. It is
extended to the multivariate case which introduces matrix
formulas instead of scalar ones.

2.1. Theoretical Derivation of the Network Output
Error PDF

[10] The distribution of uncertainties of the NN output, y,
is given by:

P yjx;Dð Þ ¼
Z

P yjx;wð Þ � P wjDð Þdw; ð1Þ

where D is the set of outputs y in a data set B = {(x(n), t(n));
n = 1,. . ., N} of N matched input/output couples. From Aires
[2004, equations (16) and (24)], we find that this probability
is equal to:

¼ 1

Z

Z
e�

1
2
t�gw xð Þð ÞT �Ain� t�gw xð Þð Þ � e�1

2
4wT �H �4wdw; ð2Þ

where Ain is the inverse of Cin the covariance matrix of the
‘‘intrinsic noise’’ of physical variables y and H is the
Hessian matrix of the quality criterion used by the learning
process (see Aires [2004] for more details on these two
matrices). Note that all the terms not dependent on w, like
�ED (w?) in the work of Aires [2004, equation (24)], have
been put together in the normalization factor Z. A first-order
expansion of the neural network function gw about the
optimum weight w? is now used:

gw xð Þ ¼ gw8 xð Þ þ GT � 4w; ð3Þ

where

G ¼ 5j w¼w8f g gwð Þ ð4Þ

is aW �M matrix (M is the number of outputs). Introducing
(4) into (2), and using Ey = (y � gw8(x)), we obtain:

P tjx;Dð Þ / e�
1
2
Ey

T �Ain�Ey
Z

e�Ey
T �Ain� GT4wð Þe�1

2
4wT � G�Ain�GTþHð Þ�4wdw

ð5Þ

/ e�
1
2
Ey

T �Ain�Ey
Z

eH
T �4w�1

2
4wT �O�4wdw ð6Þ

where:

� h ¼ �Ey
T � Ain � GT

� �T
;

� and O ¼ G � Ain � GT þH :

The integral term in equation (6) can be simplified by:

2pð Þ
dimW
2 jOj�

1
2e

1
2
hT �O�h: ð7Þ

We can rewrite equation (6) using this simplification to
obtain:

P tjx;Dð Þ / e�
1
2
Ey

T �Ain�Ey e
1
2Ey

T �Ain�GT G�Ain �GTþHð Þ�1
G�Ain�Ey ð8Þ

/ e�
1
2
Ey

T � Ain�Ain�GT G�Ain�GTþHð Þ�1
G�Ain

� �
�Ey : ð9Þ

[11] This means that the distribution of t follows a
Gaussian distribution with mean gw8(x) and covariance
matrix:

C0 ¼ Ain � Ain � GT G � Ain � GT þH
� ��1

G � Ain

h i�1

: ð10Þ

This covariance matrix can be simplified by multiplying
numerator and denominator by:

G � I þH�1 � G � Ain � GT
� �

� G:

to obtain:

C0 ¼ Cin þ GT �H�1 � G: ð11Þ

We see that the uncertainty in the network outputs are due to
(1) the intrinsic noise of the target data embodied in Cin, and
(2) the uncertainty described by the posterior distribution of
the weight vector w embodied in GT � H�1 � G. This relation
describes the fact that the uncertainties are approximately
related to the inverse data density. As expected, uncertain-
ties are larger in the less dense data space, where the
learning algorithm gets less information.

2.2. Sources of Uncertainty

[12] In his paper, Rodgers [1990] separates the various
sources of uncertainty into three components: (1) random
error due to measurement noise, (2) model error due to
uncertain model parameters and inverse model bias, and
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(3) null space error due to the inherent finite resolution of
the observing system and lack of information outside the
range of the weighting functions. We think that it is difficult
to characterize the sources of errors using this classification
because they interact together when the inversion method
uses a nonlinear model.
[13] In our equation (11), we have separated the sources

of error in two terms, the ‘‘intrinsic noise’’ with covariance
matrix Cin, and the neural inversion term with covariance
matrix GTH�1G. Our neural inversion term refers to the
errors due only to the uncertainty in the inverse model
parameters and all the remaining ‘‘outside’’ sources of errors
are grouped in Cin.
[14] The inversion uncertainty can itself be decomposed

into three sources, corresponding to the three main compo-
nents of a neural network model:
[15] 1. The imperfections of the learning data set B,

which include simulation errors when B is simulated by
a radiative transfer model, colocation and instrument
errors when B is a collection of in situ and satellite
colocations, null space errors, etc. This is probably the
most important source of uncertainty due to the inversion
technique.
[16] 2. Limitations of the network architecture because

the model might not be optimum, with too few number of
degrees of freedom, or a structure that is not optimal. This is
usually a lower-level source of uncertainty because the
network can (partly) compensate for these deficiencies.
[17] 3. A nonoptimum learning algorithm because as

good as the optimization technique is, it is impossible, in
practice, to be sure that the global minimum w? has been
found instead of a local one. We think that this source of
uncertainty is limited.
[18] Some of these sources of uncertainty can be

assessed, for example, by performing some Monte Carlo
simulations.
[19] Cin includes all other sources of errors. Our approach

allows for the estimation of the global Cin, but if some
individual terms are known, it is possible to subtract them
from Cin. For example, if the instrument noise is known, it
is possible to measure the impact of this noise on the NN
outputs. The individual terms can then be subtracted from
the global Cin. For simplification and because we do not use
such a priori information, we adopt the hypothesis that Cin

is constant for each situation, only the inversion term being
situation-dependent. Again, any a priori information about
any nonconstant term in Cin could be used in this very
flexible approach.
[20] Note that the specification of the sources of uncer-

tainty by the approach of Rodgers [1990] uses mainly the
concept of Jacobians of either the direct or the inverse
model in order to linearize the impact of each error source.
Linearity and Gaussian variables are easily manageable
analytically, the algebra being essentially based on the
covariance matrices. For example:
[21] 1. CM = Dx � E � Dx

T, the covariance of the errors due
to instrument noise, where Dx = @gw

@x is the contribution
function and E = hHT � Hi is the covariance matrix of
instrument noise H. This additional term is actually the
multivariate equivalent of the expression found in the work
of Wright et al. [2000] where the noise model is explicitly
introduced in the Bayesian framework.

[22] 2. Or F = Ab � Cb � Ab
T, the covariance of the forward

model errors, where Cb is the covariance matrix errors of the
forward model parameter, b, and Ab is the sensitivity matrix
of observations b with respect to b [Rodgers, 1990].
[23] Some bridges can be built to link our error analysis

and the approach used in variational assimilation by Rodgers
[1990]. In the work of Aires et al. [2004], such Jacobians are
analytically derived in the neural network framework. This
makes feasible the use of Rodgers’ estimates. The difference
would be that our ‘‘linearization’’ uses Jacobians that are
situation-dependent; this means that the estimation of the
error sources would be nonlinear in nature. This will be the
subject of another study.
[24] Another approach for the empirical characterization

of the various sources of uncertainties is to use simulations.
For example, for the instrument noise-related uncertainty, it
is easy to introduce a sample of noise into the network
inputs and analyze the consequent error distribution of
the outputs. The advantage of such simulation approach is
that it is very flexible and allows for the manipulation of
non-Gaussian distributions. This will be the subject of
another study.

3. Error Characterization and Analysis

[25] A neural network inversion scheme, including first
guess information, has been developed to retrieve surface
temperature (Ts), water vapor column amount (WV) and
microwave surface emissivities at each frequency/polariza-
tion (Em), over snow- and ice-free land from a combined
analysis of microwave (SSM/I) and infrared (from Interna-
tional Satellite Cloud Climatology Project) data [Aires et al.,
2001; Prigent et al., 2003a]. See Prigent et al. [2003b] for
the snow-covered land case. The present study aims, in part,
at providing uncertainty estimates for these retrievals. Both
cloudy and clear-sky versions of this retrieval scheme have
been developed but for simplicity, only the clear-sky case is
discussed here. In this section, the technical developments
of section 2 are used to characterize uncertainty sources.

3.1. Distribution of Network Outputs

[26] After the learning stage, we estimate C0, the covari-
ance matrix of network errors Ey = (t � gw(x)), over the
database B. Equation (11) shows that this covariance adds
the errors due to neural network uncertainties and all other
sources of uncertainty. Table 1 gives the numerical values of
C0 for the particular example from Prigent et al. [2003a].
The right/top triangle is for the correlation, and the left/
bottom triangle is for the covariance. The diagonal values
give the variance of errors of quantity. The correlation part
indicates clearly that some errors are highly correlated. This
is why it would be a mistake to monitor only the error bars,
even if they are easier to understand.
[27] The correlations of errors exhibit the expected

behavior. Errors in Ts are negatively correlated with the
other errors, with large values of correlation with the
vertical polarization emissivities, for the channels that are
much less sensitive to the water vapor (Em19V and Em37V).
The vertical polarization emissivities are larger than for the
horizontal polarizations and are often close to one, with the
consequence that the radiative transfer equation in channels
that are much less sensitive to the water vapor (the 19 and
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37 GHz channels), the radiative transfer equation is quasi-
linear in Ts and in EmV. In contrast, errors in water vapor are
weakly correlated with the other errors: the largest correla-
tion is with the emissivity at 85 GHz in the horizontal
polarization. The 85 GHz channel is the most sensitive to
water vapor and, since the emissivity for the horizontal
polarization is lower than for the vertical, the horizontal
polarization channel is more sensitive to water vapor. Cor-
relations between the water vapor and the emissivities errors
are positive or negative, depending on the respective con-
tribution of the emitted and reflected energy at the surface
(which is related not only to the surface emissivity but also to
the atmospheric contribution at each frequency). Correla-
tions between emissivity errors are always of the same sign
and are high for the same polarizations, decreasing when the
difference in frequency increases.
[28] The correlations involved in the PDF of the errors

described by the covariance matrix C0 make it necessary to
understand the uncertainty in a multidimentional space. This
is more challenging than just determining the individual
error bars, but it is also much more informative: the
diagonal elements of the covariance matrix provide the
variance for each output error, but the off-diagonal terms
show the level of dependence among these output errors. To
statistically analyze the covariance matrix C0, we decom-
pose it into its orthogonal eigen-vectors. This base set
constitutes a set of ‘‘error patterns’’ [Rodgers, 1990] so that
the contribution of each of these patterns to the total error is
decorrelated. In practice, the eigen-vectors in columns of L
are the error patterns, lk, given by:

C0 � lk ¼ sk lk : ð12Þ

The eigen-vectors lk need to be multiplied by sk
1
2 so that each

output component in y has the same statistical weight in the
definition of the error patterns (i.e., this is the normalized
PCA). The error in the network outputs is the sum of the
individual errors:

Ey ¼
XSL
k¼1

ak lk ; ð13Þ

where the factors ak follow a Gaussian random distribution
with unit variance. The interpretation of the different error
patterns can provide a useful insight into the origin of the
errors.
[29] Figure 1a presents the percentage of variance

explained by the cumulated eigen-vectors. In this way

the PCA provides an estimate of the number of degrees
of freedom in the retrieval error structure. Components 1
and 2 explain 55 and 30 percent of the error, respectively.
This means that the errors are concentrated in the first two
‘‘error patterns.’’ Figure 1b shows the first four PCA
components in the output variable space. The first com-
ponent is essentially related to Ts and the emissivities in
vertical polarization with a weight on water vapor close to
zero: negative value for Ts and positive ones for the Em,
especially for the EmV, are consistent with the correlations
of errors found in Table 1 that indicate that Ts and EmV
errors are anticorrelated. Water vapor dominates the sec-
ond PCA component, along with the emissivities for
channels that are more sensitive to water vapor, namely
22 GHz and for 85 GHz horizontal polarization. Maps of
the first component of the PCA for two months (not
shown) do not show any well defined spatial structures
that are related to surface characteristics, which is a good
result. The PCA second component maps (not shown) are
somewhat related to the water vapor fields, with positive
value of the component in areas of large WV and negative
ones in dry air regions. That suggests that the inversion
tends to underestimate WV in humid regions and overes-
timate it in dry ones, which might be related to the use of
absolute values of the humidity in the retrieval, instead of
relative humidity values that would give more weight to
low WV amounts. An over-representation of dry situations
in learning data set can also be an explanation for the
underestimation of WV in wet situations.

3.2. Covariance of Output Errors Due to the
Neural Inversion

[30] We already saw in the work of Aires [2004] that the
matrix H�1 is the covariance of the PDF of network
weights. The use of the gradient G transforms this matrix
into GTH�1G, the covariance error of the NN outputs
associated with the uncertainty of weights [Aires, 2004].
Note that multiplication by G regularizes H�1 so that for
this particular purpose of the estimation of the output errors,
H does not need to be regularized as described in the work
of Aires [2004].
[31] Table 2 represents this covariance matrix GTH�1G

averaged over the whole learning database B. Even if some
of the bottom left values representing the covariance matrix
are close to zero, structure is still present in this matrix, as is
shown in the correlation part (top right). This is an artifact
since the variability ranges of the variables are quite
different from each other. The error correlation matrix

Table 1. Covariance Matrix C0 of Network Output Error Estimated Over the Database Ba

Ts WV Em19V Em19H Em22V Em37V Em37H Em85V Em85H

Ts 2.138910 �0.24 �0.87 �0.72 �0.76 �0.84 �0.72 �0.49 �0.32
WV �1.392113 14.708836 0.16 �0.06 0.14 0.05 �0.15 �0.18 �0.37
Em19V �0.006294 0.003179 0.000024 0.77 0.88 0.89 0.74 0.60 0.42
Em19H �0.005261 �0.001143 0.000019 0.000024 0.72 0.73 0.81 0.60 0.56
Em22V �0.006274 0.003140 0.000024 0.000020 0.000031 0.84 0.71 0.71 0.54
Em37V �0.006121 0.001049 0.000021 0.000018 0.000023 0.000024 0.81 0.70 0.50
Em37H �0.005290 �0.002954 0.000018 0.000020 0.000020 0.000020 0.000025 0.65 0.67
Em85V �0.004895 �0.004945 0.000020 0.000020 0.000027 0.000023 0.000022 0.000046 0.79
Em85H �0.003906 �0.011933 0.000017 0.000022 0.000024 0.000020 0.000027 0.000044 0.000067

aThe right/top triangle is for correlation and left/bottom triangle is for covariance; the diagonal gives the variance. Correlations with absolute value higher
than 0.3 are in bold.
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GTH�1G, related to the NN inversion method, has relatively
small magnitudes with a maximum of 0.55. However, it has
structure similar to the global correlation matrix, with the
same signs of correlation and similar relative values be-
tween the variables.
[32] As in section 3.1, we use an eigen-decomposition of

GTH�1G to find the ‘‘error patterns’’ involved in this part of

the errors. Figures 1a and 1c shows the explained cumulated
variance spectrum and the corresponding error patterns. The
overall behavior of the first components is rather similar to
the analysis of matrix C0 of section 3.1: The first component
is related to Ts and the emissivities in vertical polarization
(negative value for Ts and positive ones for the Em,
especially for the EmV ). Water vapor dominates the second

Table 2. Covariance Matrix GTH�1G of Error Due to Network Uncertainty, Averaged Over the Database Ba

Ts WV Em19V Em19H Em22V Em37V Em37H Em85V Em85H

Ts 0.493615 �0.14 �0.28 �0.14 �0.25 �0.32 �0.16 �0.19 �0.06
WV �0.106484 1.063071 0.10 �0.02 0.09 0.02 �0.07 �0.15 �0.25
Em19V �0.000325 0.000167 0.000002 0.33 0.55 0.55 0.28 0.27 0.08
Em19H �0.000255 �0.000060 0.000001 0.000006 0.26 0.22 0.29 0.10 0.13
Em22V �0.000268 0.000152 0.000001 0.000001 0.000002 0.50 0.26 0.28 0.12
Em37V �0.000330 0.000033 0.000001 0.000000 0.000001 0.000002 0.34 0.38 0.14
Em37H �0.000270 �0.000183 0.000001 0.000001 0.000000 0.000001 0.000005 0.16 0.26
Em85V �0.000231 �0.000282 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 0.43
Em85H �0.000128 �0.000681 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001 0.000006

aThe right/top triangle is for correlation and left/bottom triangle is for covariance; the diagonal gives the variance. Correlations with absolute value higher
than 0.3 are in bold.
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Figure 1. Eigen-decomposition of covariance matrices: (a) explained variance, (b) error patterns for C0

(network output errors), (c) error patterns for GTH�1G (errors due to neural network uncertainty), and
(d) error patterns for Cin (intrinsic errors).
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PCA component, along with the emissivities for channels
that are more sensitive to water vapor, namely 22 GHz and
for 85 GHz horizontal polarization.

3.3. Covariance of the Intrinsic Noise of Target Values

[33] To estimate Cin, we use equation (11):

Cin ¼ C0h iB � GTH�1G
	 


B; ð14Þ

where the two right hand terms are the covariance matrix of
the total output errors averaged over B (section 3.1) and the
covariance matrix of the output errors due to the network
inversion scheme averaged over B [Aires, 2004]. Table 3
gives the numerical values of the matrix Cin: The right/top
triangle is for the correlation and the left/bottom triangle is
for the covariance.
[34] Intrinsic error correlations can be very large (up to

0.99). The structure of Cin is also very similar to the
structure of the global error correlation matrix, the only
noticeable difference being the larger correlation values.
[35] The eigen-decomposition shows that most of the

error variability is related to the first pattern: The first
component explains 90% of the errors, meaning that the
number of degrees of freedom in the retrieval error vari-
ability is limited. It is mostly related to Ts and to the
emissivities with very similar weights. As for the other
matrices, maps of the PCA components do not have very
particular spatial structures and are rather similar to the
other maps.

3.4. Hyperparameters Optimization

[36] We saw in the work of Aires [2004] that the hyper-
parameter matrices Ain and Ar can be used a priori in the
quality criterion for the training of the NN. This would have
a regularization effect on the network. How are these
hyperparameters to be obtained a priori? In a Bayesian
framework, one type of estimation procedure is the
so-called ‘‘evidence’’ approximation scheme [Gull, 1988;
MacKay, 1992] based on the conventional statistics ‘‘type II
maximum likelihood’’ [Berger, 1985].
[37] Another simpler approach could be to omit the

hyperparameters in the first stage, by using the simplified
data and regularization criteria of Aires [2004, equations (6)
and (9)]. This is the method adopted in our study. After the
learning process, the hyperparameters Ain and Ar can then
be directly estimated and used in a new and more
constrained quality criterion to re-train the NN. We can

iteratively alternate the learning process and the hyper-
parameter estimation until the hyperparameters stabilize. It
would be interesting to monitor the evolution of both of
these matrices.

4. Uncertainty of Network Outputs

4.1. Network Outputs Error Estimate

[38] Once Cin is available, we can estimate a C0(x) that is
dependent on the observations x, the term GTH�1G varying
with input x. It should be noted that the use of the
regularization for matrix H presented in the work of Aires
[2004] has virtually no consequences for the results
obtained for the error bars in the following. Using no
regularization for the Hessian matrix is possible since H
is multiplied by the gradients in GTH�1G. This is an
additional argument that the regularization helps the matrix
inversion without damaging the information in the Hessian.
[39] C0(x) is estimated for each of the 1,239,187 samples

for clear-sky pixels in July 1992. Figure 2 presents the
monthly mean standard deviations (square root of the
diagonal terms in C0(x)) for four outputs: the surface skin
temperature Ts, the columns integrated water vapor WV, and
the microwave emissivities at 19 GHz for vertical and
horizontal polarizations.
[40] The errors exhibit the expected geographical pat-

terns. Large errors on Ts are concentrated in regions where
the emissivities are lower and/or highly variable: inundated
areas and deserts. In inundated areas for instance (around
the rivers like the Amazon or the Mississippi) or in coastal
regions, the contribution from the surface is weaker and
sensitivity to Ts is lower because the emissivities are lower.
In sandy regions through desert areas, due to higher
transmission in the very dry sandy medium, microwave
radiation does not come from the very first millimeters of
the surface, but from deeper below the surface, the lower the
frequency the deeper [Prigent and Rossow, 1999]. As a
consequence, the microwave radiation is not directly related
to the skin surface temperature (see Prigent and Rossow
[1999] for a detailed explanation) and Ts cannot be retrieved
with the same accuracy. The same arguments hold for the
errors in emissivity. All the parameters being tightly related
for a given pixel, the water vapor errors are also rather large
in inundated regions and in sandy areas.

4.2. Marginalization of the Error Probability

[41] The marginalization of the total error PDF consists in
conditioning part of it by integrating over some of the error

Table 3. Covariance Matrix Cin of Intrinsic Noise Errors, Estimated Over the Database Ba

Ts WV Em19V Em19H Em22V Em37V Em37H Em85V Em85H

Ts 1.645294 �0.27 �0.99 �0.92 �0.86 �0.95 �0.88 �0.55 �0.37
WV �1.285629 13.645765 0.17 �0.06 0.14 0.05 �0.16 �0.19 �0.39
Em19V �0.005968 0.003011 0.000021 0.89 0.91 0.92 0.83 0.63 0.46
Em19H �0.005006 �0.001083 0.000017 0.000017 0.83 0.86 0.98 0.71 0.66
Em22V �0.006005 0.002988 0.000023 0.000019 0.000029 0.87 0.80 0.75 0.58
Em37V �0.005790 0.001015 0.000020 0.000017 0.000022 0.000022 0.90 0.72 0.54
Em37H �0.005019 �0.002770 0.000017 0.000018 0.000019 0.000019 0.000019 0.74 0.76
Em85V �0.004663 �0.004662 0.000019 0.000019 0.000026 0.000022 0.000021 0.000043 0.82
Em85H �0.003777 �0.011251 0.000016 0.000021 0.000024 0.000019 0.000026 0.000042 0.000060

aThe right/top triangle is for correlation and left/bottom triangle is for covariance; the diagonal gives the variance. Correlations with absolute value higher
than 0.3 are in bold.
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variables and analyzing only the remaining few. Condi-
tioning of the error probability is a good compromise
between analyzing all the variables at the same time with
the eigen-value decomposition (but each mode is only part
of the variability) and observing the error bars for only
one variable. In this section, the total PDF of output
errors is projected onto only two variables to obtain a
two-dimensional PDF of errors. This allows us to quantify
the spread of errors in the same way as an histogram for a
one-dimensional measurement. It also gives a measure of
the correlation of errors between the two considered
variables.
[42] In Figure 3, such a two-dimensional marginalization

of the error PDF is presented for Ts paired with WV or Em

19 GHz. Because the total PDF of errors is Gaussian, the
contour plots of the marginalized error probability are equal
probability ellipsoids. There is no bias and as a conse-
quence, ellipsoids are centered on zero. In this figure, the
data samples are separated for deserts and tropical forests.
First, for both surfaces Ts errors are anticorrelated with
emissivities, as already discussed. The probability ellipsoids
for Ts versusWV are almost symmetric around 0 in Ts errors,
meaning that errors in Ts and WV are poorly correlated.
Second, the errors are more important for desert surfaces
than for tropical forest, confirming the results obtained in
Figure 2.
[43] It should be noted that the error estimates would

be considerably improved if outliers were excluded, such
as coast-contaminated or wetland pixels. However, rather
than filtering difficult retrievals, we prefer to perform the

retrieval for all situations as long as the error estimate is
specified.

4.3. Outlier Detection

[44] What is the behavior of the neural retrieval when
the situation is particularly difficult like when the first
guess is far from the actual solution? In principle, the
nonlinearity of the neural network allows it to have
different weights on the observations and first guess
information, depending on the situation. For example, if
the first guesses are better in tropical cases than in polar
cases, the neural network will have inferred this behavior
during the learning stage, and then will give less emphasis
to the first guess when a polar situation is to be inverted.
This assumes once again that the training data set is
correctly sampled. To understand the behavior of the
uncertainty estimates better, a good strategy is to introduce
artificial errors for each source of information and to
analyze the resulting impact on the network outputs. The
goal of this section is to validate our uncertainty estimate
by analyzing extreme case, we don’t investigate here
physical error structures.
[45] In Figure 4, the retrieval STD error change index is

presented to show the effect of perturbating the mean inputs
or the mean FGs by an artificial error. The impact of these
artificial errors is measured in term of percentage of the
regular STD retrieval error as estimated in section 4.1. For
example, an impact index of 120% means that the regular
STD retrieval error estimate increases by 20% when the
input is perturbed. The impact indices can be compared for

Figure 3. Two-dimensional marginalization of the network output error PDF for surface skin
temperature, Ts, integrated water vapor, WV, and 19 GHz emissivity for horizontal polarization, Em19H:
Top two graphs are for deserts, and bottom two are for tropical forests. Contour lines represent the equal
probability ellipsoids with levels of 80, 60, 40, and 20% of the maximum of the PDF, from the center to
the outside.
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each of the nine network outputs. These results are obtained
by averaging over the 20,000 samples in B.
[46] Figure 4a presents the error impacts when all

17 network inputs are changed by a factor ranging from
�5% to +5%. Obviously, this will introduce incoherent
situations since the complex nonlinear relationships between
vertical/horizontal brightness temperatures and first guesses
will not be respected. As expected, the error increases
monotically with the absolute value of the perturbation.
However, the impact is not uniform among the output
variables. For WV, which is retrieved with a rather low
accuracy, changes in the inputs do not have a large influence.
The impact on the emissivities is larger for horizontal
polarizations than for vertical: horizontal polarization emis-
sivities are much more variable than the vertical ones and as
a consequence, emissivities for vertical polarization have
rather similar values in outputs whatever the situation and do
not depend that much on the inputs. It can also be noted that
positive perturbations have a slightly stronger impact than
negative ones. This is to be related to the distribution of the
variables in the training data base. For the emissivities for
instance, the distribution has a steep cut-off for unit emis-
sivity, above which the emissivities are not physical. On the
contrary, a large range of emissivities exists in the training
data base at lower values [see Aires et al., 2001, Figure 3]).
As a consequence, decreasing the emissivity first guess will
still be physically realistic whereas increasing it will not be.
[47] Figure 4b is the same except that the changes are

made only for the first guess inputs. We note a similar
behavior (nonuniform impact among output variables and

with larger impact for positive perturbations) but we ob-
serve also that errors are larger than when all the inputs are
perturbed in Figure 4a. This suggests that the error estimate
is able to detect inconsistencies between observations and
first guess inputs.
[48] In Figures 4c and 4d, the first guess input variables

are perturbed individually with respectively negative and
positive amplitude of 5%. For negative perturbations, the
biggest impact is produced by the Ts first guess perturba-
tion: it is noticeable that the Ts error impact is similar for the
retrieval of Em19H and for its own retrieval. For other
variables, the impacts have lower levels, with almost no
impact from the WV first guess. The WV first guess is
associated with large error (40%) and as a consequence the
NN gives little importance to this first guess. For positive
individual perturbations in Figure 4d, the results are similar
to the negative errors. The magnitude of the positive
changes as compared to the negative ones are related again
to the distribution of the variables in the training data set
[see Aires et al., 2001, Figure 3]: If the distribution is not
symmetric around a mode value, depending on the shape of
the distribution, increasing or decreasing the value can be
more or less realistic.
[49] In Figure 5, ‘‘incoherencies’’ have been introduced

between the vertical and horizontal polarizations in the
brightness temperatures (TB) observations and in the first
guess emissivities, Ems, by increasing or decreasing one
keeping the other polarization constant. In Figure 5a, we
increased and decreased artificially by 5% the horizontal TB
and in Figure 5b the same has been done for vertical

Figure 4. Estimated STD error change index for an artificial perturbation: (a) of the mean input, (b) of
the mean first guess input, (c) of individual first guess negative changes, and (d) of individual first
guess positive changes (see detailed explanation in the text). Statistics are performed over 20,000 samples
from B.
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polarizations. Figures 5c and 5d are similar, for first guess
emissivities instead of TB. Several comments can be made.
First, the impact is larger for observations than for first
guess errors which suggests that observations are more
important for the retrieval, the first guess being used mostly
as an additional constraint. Second, these polarization
inconsistencies have a bigger impact than changes of the
means in Figure 4. For example, the NN might emphasize
the difference of polarization for the retrieval and then these
inconsistencies would have a very strong impact. This
shows that the NN, using complex nonlinear multivariate
relationships, is sensitive to inconsistencies among the
inputs. It is encouraging to see that our error estimates are
able to detect such situations. Lastly, the relative impact of
the positive and negative changes can be explained again by
the distribution of the variables in the learning data base.
For the emissivities, whatever the polarization and the
frequency, the histograms are not symmetric, having a broad
tail toward lower values and an abrupt end for the higher
values: as a consequence, when artificially increasing the
emissivities, unrealistic values are attained which is not the
case when decreasing the emissivities. See Aires et al.
[2001] for a complete description of the distributions of
the learning data base and the histograms of the inputs.
[50] The results shown in Figures 4 and 5 are consistent

with a coherent physical behavior, confirming that the new
tools developed in this study and its companion papers can
be used to diagnose difficult retrieval situations such as
might be caused by bad first guesses, inconsistent measure-

ments, situations not included in the training data set, or
uncertainties of the neural network on the possible retriev-
als. Our a posteriori probability distributions for the neural
network retrieval define confidence intervals on the re-
trieved quantities that allow the detection of such situations.
[51] Since outlier detection can concerns individual per-

tubations, in one of the measurements, another experience
was done. In Figure 6, the retrieval STD error change index
is presented when each of the inputs are, individually,
changed to an extreme value. The FG surface skin temper-
ature is set to 250 and 350 K. The error estimate increases,
respectively, by about 25% and 90%. This unusual error
estimates should allow the detection of such individual
outliers. The same behavior is observed for brightness
temperature measurements, or for microwave emissivity
first guesses.
[52] It could be argued that a limitation of our retrieval

uncertainty estimates comes from the fact that our technique
is based on statistics over a data set B. This could mean that
the error estimate is only valid when we are inside the
variability spanned by B. On the contrary, it has been shown
that the ‘‘local quadratic approximation’’ approach increases
the accuracy of error estimates in sparsely sampled data
space domains [see, e.g., MacKay, 1992].

5. Conclusion and Perspectives

[53] This paper describes a technique to estimate the
uncertainties of neural network retrievals and provides a

Figure 5. Estimated STD error change index for an artificial perturbation: (a) of horizontal polarization
brightness temperatures, (b) of vertical polarization brightness temperatures, (c) of horizontal polarization
first guess emissivities, and (d) of vertical polarization first guess emissivities. Statistics are performed
over 20,000 samples from B.
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rigorous description of the sources of uncertainty. The tools
are very generic and can be used for different linear or
nonlinear regression models. A fully multivariate formula-
tion is introduced. Its generality will allow future develop-
ments (like the iterative re-estimation strategy or the fully
Bayesian estimation of the hyperparameters). It gives
insights into the neural technique that is often considered
with suspicion because its mechanisms are rarely or clearly
explicited.
[54] Together with the introduction of first guess infor-

mation first described in the work of Aires et al. [2001],
error specification makes the neural network approach even
closer to more traditional inversion techniques like varia-
tional assimilation [Ide et al., 1997] and iterative methods in
general. Furthermore, quantities obtained from NN retriev-
als can now be combined with forecast model in a varia-
tional assimilation scheme since the error covariances
matrices can be estimated. These covariance matrices are
not constant, they are situation-dependent. This makes the
scheme even better since it is possible now to assimilate
only inversions of good quality (low uncertainty estimates).
Bad situations can be discarded from the assimilation
or even better can be used as an ‘‘extreme’’ detection
scheme that would, for example, signal the need for an
increased number of simulations in an ensemble forecast.
All these new developments establish the neural network
technique as a serious candidate for remote sensing in
operational schemes, compared to the more classical
approaches [Twomey, 1977].
[55] Our method provides a framework for the character-

ization, the analysis, and the interpretation of the various
sources of uncertainty in any neural network-based retrieval
scheme. This makes possible improvements in the inversion
schemes. Any fault that can be detected can be corrected:
Lack of data in the observation domains, errors of the model
in some specific situations, or detection of extreme events.
This should benefit a large community of neural network
users in meteorology/climatology.

[56] Many new algorithmic developments can be pursued
and we provided a few ideas. For example, the network
output uncertainties can easily be used for a novelty
detection (i.e., data that has not been used to train the
network) or fault detection (i.e., data that are corrupted by
errors, like instrument-related problems). Our determination
of error characteristics can also be used with adaptative
learning algorithms (i.e., learning when a small additional
data set is provided after the main learning of the network
has been done).
[57] We mentioned that the NN Jacobians [Aires et al.,

2004, 1999] can be used to express the various sources of
uncertainty with even more detail, using Rodgers’ [1990]
approach. Another technical development would be the
optimization of the hyperparameters as described in
section 3.4 using an iterative re-estimation strategy or
evidence measure in a Bayesian framework [Near, 1996;
Nabney, 2002].
[58] Applications of these new tools and concepts are

numerous: This approach can first be used for the inversion
of satellite observations from temperature/humidity sound-
ing instruments. The technique described in the work of Aires
et al. [2002a] will be used to assess the quality and the
difficulties in the retrieval of atmospheric profiles such as
temperature, water vapor, or ozone. It would be very inter-
esting to quantify the uncertainties for each atmospheric
layer. In that sense, this will give an overview of the actual
vertical resolution that can be expected with the next-gener-
ation instruments like IASI (Infrared Atmospheric Sounding
Interferometer) or AIRS (Atmospheric Infrared Sounder).
[59] We would like to test how beneficial these uncertainty

estimates would be when inverted satellite measurements are
assimilated instead of raw brightness temperatures. Another
application concerns the analysis of climate systems [Aires
and Rossow, 2003]. In this modeling of dynamical systems,
the prediction uncertainty might be used to detect complex
situations where the attractor can diverge toward various
basins of attraction.

Figure 6. Estimated STD error change index for an individual perturbation of the network inputs.

D10304 AIRES ET AL.: NEURAL NETWORK UNCERTAINTIES, 2

11 of 12

D10304



Notation

y vector of physical variables to retrieve, outputs of
the NN.

M dimension of y, number of outputs in the NN.
t target vector of physical variables in data set B.
x observations vector, inputs of the NN.
H SSM/I instrumental noise, noise on inputs x of the

NN.
Ev generic error symbol for variable v.
Pv generic probability measure for variable v.
C0 (=A0

�1), covariance matrix of total error on
retrieved physical variables y.

Cin (=Ain
�1), covariance matrix of intrinsic noise on

physical variables y, equivalent to 1/b in traditional
Bayesian formulation.

Cr (=Ar
�1), covariance matrix for weight regulariza-

tion, equivalent to 1/a in traditional Bayesian
formulation.

H = rjw (rjw (ED(w))), the Hessian matrix of the
log-likelihood.

G rj
w¼w8f ggw.

CM the covariance of the errors due to instrument noise
E = hET � Ei, covariance matrix of the measurement

errors.
F covariance matrix of the radiative transfer model

errors.
Cb the covariance matrix of the forward model

parameter errors.
Dx = @gw

@x is the contribution function.

Ab =
@x yð Þ
@b is the sensitivity of observations x with

respect to b the parameters of the radiative transfer
model.

L matrix whose columns are the ‘‘error patterns’’ lk
�T transposition operator.

h�iB expectation operator.
gw neural network model, or transfer function for our

application.
w {wi; i = 1,. . .,W}, the vector of the network

weights.
W dimension of w.
B learning database, that includes outputs D.
D target or network output database.
N number of samples in D and B.

ED(w) data term of the quality criterion.
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